We propose new width-based planning and learning algorithms inspired from a careful analysis of the design decisions made by previous width-based planners. The algorithms are applied over the Atari-2600 games and our best performing algorithm, Novelty guided Critical Path Learning (N-CPL), outperforms the previously introduced width-based planning and learning algorithms $\pi$-IW(1), $\pi$-IW(1)+ and $\pi$-HIW(n, 1). Furthermore, we present a taxonomy of the Atari-2600 games according to some of their defining characteristics. This analysis of the games provides further insight into the behaviour and performance of the algorithms introduced. Namely, for games with large branching factors, and games with sparse meaningful rewards, N-CPL outperforms $\pi$-IW, $\pi$-IW(1)+ and $\pi$-HIW(n, 1).


翻译:我们根据对先前的宽度规划人员所作设计决定的仔细分析,提出了新的宽度规划和学习算法,这些算法适用于Atari 2600游戏和我们最佳的演算法“新颖引导关键路径学习”(N-CPL),优于以前采用的宽度规划和学习算法$\pi$-IW(1),$\pi$-IW(1)+和$\pi$-HIW(n, 1),此外,我们根据Atari 2600游戏的某些界定特点,对Atari 2600游戏进行了分类,这种对游戏的分析进一步深入了解了所引入的算法的行为和表现。也就是说,对于具有大分支因素的游戏和报酬微薄的游戏,N-CPL优于$\pi$-IW,$\pi$-IW,$\pi$-IW(1)+和$\pi$\pi$-HIW(n, 1)和$\pi-HIW(n, 1)和$\pi-HW(n, 1)。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
18+阅读 · 2021年3月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员