The model order of a wireless channel plays an important role for a variety of applications in communications engineering, e.g., it represents the number of resolvable incident wavefronts with non-negligible power incident from a transmitter to a receiver. Areas such as direction of arrival estimation leverage the model order to analyze the multipath components of channel state information. In this work, we propose to use a variational autoencoder to group unlabeled channel state information with respect to the model order in the variational autoencoder latent space in an unsupervised manner. We validate our approach with simulated 3GPP channel data. Our results suggest that, in order to learn an appropriate clustering, it is crucial to use a more flexible likelihood model for the variational autoencoder decoder than it is usually the case in standard applications.
翻译:无线频道的模型顺序在通信工程的各种应用中起着重要作用,例如,它代表了从发报机到接收器之间不可忽略的电源事故的可解决事件波前数。 诸如抵达估计方向等领域利用模型顺序分析频道国家信息的多路径组成部分。 在这项工作中,我们提议使用变式自动编码器,以不受监督的方式将无标签的频道状态信息与变式自动编码器潜伏空间的模型顺序有关。 我们用模拟的 3GPP 频道数据验证了我们的方法。 我们的结果表明,为了学习适当的组合,对变式自动编码器解码器使用比标准应用通常更为灵活的可能性模型至关重要。