In this paper, we introduce the novel state-of-the-art Dual-attention Transformer and Discriminative Flow (DADF) framework for visual anomaly detection. Based on only normal knowledge, visual anomaly detection has wide applications in industrial scenarios and has attracted significant attention. However, most existing methods fail to meet the requirements. In contrast, the proposed DTDF presents a new paradigm: it firstly leverages a pre-trained network to acquire multi-scale prior embeddings, followed by the development of a vision Transformer with dual attention mechanisms, namely self-attention and memorial-attention, to achieve two-level reconstruction for prior embeddings with the sequential and normality association. Additionally, we propose using normalizing flow to establish discriminative likelihood for the joint distribution of prior and reconstructions at each scale. The DADF achieves 98.3/98.4 of image/pixel AUROC on Mvtec AD; 83.7 of image AUROC and 67.4 of pixel sPRO on Mvtec LOCO AD benchmarks, demonstrating the effectiveness of our proposed approach.


翻译:本文介绍了一种新颖的、最先进的双注意力变压器和鉴别流(DADF)框架,用于视觉异常检测。基于仅具有正常知识,视觉异常检测在工业场景中具有广泛的应用,并引起了极大的关注。 然而,大多数现有方法未能满足要求。与此相反,所提出的DTDF提出了一种新的范例:它首先利用预训练网络获取多尺度先验嵌入,然后开发了一个具有双重注意机制的视觉变压器,即自我关注和纪念关注,以实现与顺序和正常性关联的先前嵌入的两级重构。此外,我们提出使用正则化流来建立每个尺度上的先前嵌入和重构的联合分布的鉴别性似然。DADF在Mvtec AD上实现了98.3/98.4的图像/像素AUROC;在Mvtec LOCO AD标准测试中,图像AUROC为83.7,像素sPRO为67.4,证明了我们提出的方法的有效性。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
59+阅读 · 2021年3月17日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
26+阅读 · 2020年2月21日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2021年3月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员