We study simple binary hypothesis testing under both local differential privacy (LDP) and communication constraints. We qualify our results as either minimax optimal or instance optimal: the former hold for the set of distribution pairs with prescribed Hellinger divergence and total variation distance, whereas the latter hold for specific distribution pairs. For the sample complexity of simple hypothesis testing under pure LDP constraints, we establish instance-optimal bounds for distributions with binary support; minimax-optimal bounds for general distributions; and (approximately) instance-optimal, computationally efficient algorithms for general distributions. When both privacy and communication constraints are present, we develop instance-optimal, computationally efficient algorithms that achieve the minimum possible sample complexity (up to universal constants). Our results on instance-optimal algorithms hinge on identifying the extreme points of the joint range set $\mathcal A$ of two distributions $p$ and $q$, defined as $\mathcal A := \{(\mathbf T p, \mathbf T q) | \mathbf T \in \mathcal C\}$, where $\mathcal C$ is the set of channels characterizing the constraints.
翻译:在本地差异隐私(LDP)和通信限制下,我们研究简单的二进制假设测试。我们把结果定性为最优化或最优化的最小最大值或最优化实例:先持有一组配送配对,配有指定的极分差异和总变异距离,而后持有特定的配送配对。对于在纯LDP限制下进行简单假设测试的样本复杂性,我们在纯粹的LDP限制下,为配有二进制支持的分配设置了最优化的试想界限;为一般分布设置了最优化的缩放框;以及(约)实例-最佳值,用于计算通用分布的高效算法。当存在隐私和通信限制时,我们开发了最优化的、具有计算效率的成套配送配送配送配对,实现最小可能的样品复杂性(直至通用常数),而后者的计算结果取决于确定联合范围的极端点,设定了美元A值为2美元和1美元,定义为$mathal A:=(mathf T, mathb T) calmab\math croisal $ cal=cal=cal=cal=cal=cal=cal=cal=cal=cal=cal=cal=cal=cma=cma=cmaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx