This paper investigates lift, the likelihood ratio between the posterior and prior belief about sensitive features in a dataset. Maximum and minimum lifts over sensitive features quantify the adversary's knowledge gain and should be bounded to protect privacy. We demonstrate that max and min lifts have a distinct range of values and probability of appearance in the dataset, referred to as \emph{lift asymmetry}. We propose asymmetric local information privacy (ALIP) as a compatible privacy notion with lift asymmetry, where different bounds can be applied to min and max lifts. We use ALIP in the watchdog and optimal random response (ORR) mechanisms, the main methods to achieve lift-based privacy. It is shown that ALIP enhances utility in these methods compared to existing local information privacy, which ensures the same (symmetric) bounds on both max and min lifts. We propose subset merging for the watchdog mechanism to improve data utility and subset random response for the ORR to reduce complexity. We then investigate the related lift-based measures, including $\ell_1$-norm, $\chi^2$-privacy criterion, and $\alpha$-lift. We reveal that they can only restrict max-lift, resulting in significant min-lift leakage. To overcome this problem, we propose corresponding lift-inverse measures to restrict the min-lift. We apply these lift-based and lift-inverse measures in the watchdog mechanism. We show that they can be considered as relaxations of ALIP, where a higher utility can be achieved by bounding only average max and min lifts.


翻译:本文调查升降、 后端和前端对数据集中敏感特性的信念之间的可能性比。 敏感特性的最大和最小升幅将对手的知识增长量量化, 并且应该约束于保护隐私。 我们证明最大和分钟升降在数据集中具有不同范围的值和外观概率, 称为 emph{ 移动不对称} 。 我们提出不对称的地方信息隐私( ALIP) 是一个兼容的隐私概念, 与升降不对称( ALIP) 相容, 其范围可以适用于最小和最大升降。 我们在监控和最佳随机响应( ORR) 机制中使用了ALIP, 这是实现升降降隐私的主要方法。 这表明, 最大和最小升升升升的功能与现有的本地信息隐私相比, 这确保了相同的( 度) 最大和最小升升升的值。 我们建议合并监督机制, 提高数据效用, 随机随机反应( ALIP) 来调查相关的升降措施, 包括 $_ $_ 1 monm, $\\ 2 prane- privaty (OR) (OR) ) 实现升降的隐私隐私隐私隐私。 。 我们只能在升升升升升升升升升升升升 上 上显示高的升升降为 。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员