This paper investigates lift, the likelihood ratio between the posterior and prior belief about sensitive features in a dataset. Maximum and minimum lifts over sensitive features quantify the adversary's knowledge gain and should be bounded to protect privacy. We demonstrate that max and min lifts have a distinct range of values and probability of appearance in the dataset, referred to as \emph{lift asymmetry}. We propose asymmetric local information privacy (ALIP) as a compatible privacy notion with lift asymmetry, where different bounds can be applied to min and max lifts. We use ALIP in the watchdog and optimal random response (ORR) mechanisms, the main methods to achieve lift-based privacy. It is shown that ALIP enhances utility in these methods compared to existing local information privacy, which ensures the same (symmetric) bounds on both max and min lifts. We propose subset merging for the watchdog mechanism to improve data utility and subset random response for the ORR to reduce complexity. We then investigate the related lift-based measures, including $\ell_1$-norm, $\chi^2$-privacy criterion, and $\alpha$-lift. We reveal that they can only restrict max-lift, resulting in significant min-lift leakage. To overcome this problem, we propose corresponding lift-inverse measures to restrict the min-lift. We apply these lift-based and lift-inverse measures in the watchdog mechanism. We show that they can be considered as relaxations of ALIP, where a higher utility can be achieved by bounding only average max and min lifts.
翻译:本文调查升降、 后端和前端对数据集中敏感特性的信念之间的可能性比。 敏感特性的最大和最小升幅将对手的知识增长量量化, 并且应该约束于保护隐私。 我们证明最大和分钟升降在数据集中具有不同范围的值和外观概率, 称为 emph{ 移动不对称} 。 我们提出不对称的地方信息隐私( ALIP) 是一个兼容的隐私概念, 与升降不对称( ALIP) 相容, 其范围可以适用于最小和最大升降。 我们在监控和最佳随机响应( ORR) 机制中使用了ALIP, 这是实现升降降隐私的主要方法。 这表明, 最大和最小升升升升的功能与现有的本地信息隐私相比, 这确保了相同的( 度) 最大和最小升升升的值。 我们建议合并监督机制, 提高数据效用, 随机随机反应( ALIP) 来调查相关的升降措施, 包括 $_ $_ 1 monm, $\\ 2 prane- privaty (OR) (OR) ) 实现升降的隐私隐私隐私隐私。 。 我们只能在升升升升升升升升升升升升 上 上显示高的升升降为 。</s>