We investigate the proof complexity of extended Frege (EF) systems for basic transitive modal logics (K4, S4, GL, ...) augmented with the bounded branching axioms $\mathbf{BB}_k$. First, we study feasibility of the disjunction property and more general extension rules in EF systems for these logics: we show that the corresponding decision problems reduce to total coNP search problems (or equivalently, disjoint NP pairs, in the binary case); more precisely, the decision problem for extension rules is equivalent to a certain special case of interpolation for the classical EF system. Next, we use this characterization to prove superpolynomial (or even exponential, with stronger hypotheses) separations between EF and substitution Frege (SF) systems for all transitive logics contained in $\mathbf{S4.2GrzBB_2}$ or $\mathbf{GL.2BB_2}$ under some assumptions weaker than $\mathrm{PSPACE \ne NP}$. We also prove analogous results for superintuitionistic logics: we characterize the decision complexity of multi-conclusion Visser's rules in EF systems for Gabbay--de Jongh logics $\mathbf T_k$, and we show conditional separations between EF and SF for all intermediate logics contained in $\mathbf{T_2 + KC}$.
翻译:我们调查了基础中转模式逻辑(K4, S4, GL,...)的延伸断裂(FEF)系统的证明复杂性。 首先,我们研究了断开属性的可行性,以及EF系统中这些逻辑的更一般性的扩展规则:我们表明,相应的决定问题会降低到全部 CoNP搜索问题(或等效的,二进制的NP对等,{GL.2BB_2});更确切地说,扩展规则的决定问题相当于传统EF系统某种特殊的内插。接下来,我们使用这种定性来证明EF和替代Frege(SF)系统之间的超极极极极化(甚至指数化,更强的假设)分离,以替代Frege(SF)系统,这在$mathf{S4.2GrzB_2} 或$mathbf, ${GL.2BB_2} 中,在比美元更弱的假设下,扩展规则的中间值相当于美元{PACENP_NNP} 。我们用这种定性特征来证明超级逻辑体系中的类似结果。