In the context of state-space models, backward smoothing algorithms rely on a backward sampling step, which by default has a O(N^2) complexity (where N is the number of particles). An alternative implementation relying on rejection sampling has been proposed in the literature, with stated O(N) complexity. We show that the running time of such algorithms may have an infinite expectation. We develop a general framework to establish the convergence and stability of a large class of backward smoothing algorithms that may be used as more reliable alternatives. We propose three novel algorithms within this class. The first one mixes rejection with multinomial sampling; its running time has finite expectation, and close-to-linear complexity (in a certain class of models). The second one relies on MCMC, and has deterministic O(N) complexity. The third one may be used even when the transition of the model is intractable. We perform numerical experiments to confirm the good properties of these novel algorithms.
翻译:在国家-空间模型方面,后向平滑算法依赖于一个后向的取样步骤,默认后向的取样步骤具有O(N)2复杂性(即微粒数量)。文献中提出了一种依赖拒绝取样的替代方法,指出O(N)复杂程度。我们表明,这种算法的运行时间可能有无限的预期。我们开发了一个总框架,以建立一大批可以用作更可靠的替代方法的后向平滑算法的趋同和稳定性。我们在这个类别中提出了三种新的算法。第一个算法将拒绝与多名抽样混合在一起;第一个算法的运行时间有一定的预期,以及接近线性的复杂性(在某种类型的模型中)。第二个算法依靠MCMC,并且具有确定性O(N)复杂程度。第三个算法即使模型的转变难以实现,也可以使用。我们进行了数字实验,以证实这些新算法的良好特性。