Every representative democracy must specify a mechanism under which voters choose their representatives. The most common mechanism in the United States -- winner-take-all single-member districts -- both enables substantial partisan gerrymandering and constrains `fair' redistricting, preventing proportional representation in legislatures. We study the design of multi-member districts (MMDs), in which each district elects multiple representatives, potentially through a non-winner-takes-all voting rule. We carry out large-scale analyses for the U.S. House of Representatives under MMDs with different social choice functions, under algorithmically generated maps optimized for either partisan benefit or proportionality. Doing so requires efficiently incorporating predicted partisan outcomes -- under various multi-winner social choice functions -- into an algorithm that optimizes over an ensemble of maps. We find that with three-member districts using Single Transferable Vote, fairness-minded independent commissions would be able to achieve proportional outcomes in every state up to rounding, and advantage-seeking partisans would have their power to gerrymander significantly curtailed. Simultaneously, such districts would preserve geographic cohesion, an arguably important aspect of representative democracies. In the process, we open up a rich research agenda at the intersection of social choice and computational redistricting.


翻译:每个有代表性的民主必须具体规定一个选民选择其代表的机制。美国最常用的机制 -- -- 赢者-所有单一成员选区 -- -- 既能够进行实质性的党派干预,又能限制`公平'重新划分,防止立法机构中的比例代表。我们研究多成员区的设计,其中每个区选举多种代表,有可能通过非赢者-共赢-全体投票规则。我们为具有不同社会选择功能的MMDs下的美国众议院进行大规模分析,根据为党派利益或相称性优化的算法绘制的地图进行。这样做需要将预测的党派结果有效纳入多赢者社会选择功能下,形成一种超越地图组合的最佳算法。我们发现,如果有三成员区使用单一可转移的选票,公平意识的独立委员会将能够在每个州取得相称的结果,从而实现四分而行之,追求优势的党派将拥有其权力,以利获利。同时,这样的区域将保持地域凝聚力,这是多赢者社会选择的一个重要方面,也是在开放的民主社会中进行。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员