The Knowledge graph (KG) uses the triples to describe the facts in the real world. It has been widely used in intelligent analysis and understanding of big data. In constructing a KG, especially in the process of automation building, some noises and errors are inevitably introduced or much knowledges is missed. However, learning tasks based on the KG and its underlying applications both assume that the knowledge in the KG is completely correct and inevitably bring about potential errors. Therefore, in this paper, we establish a unified knowledge graph triple trustworthiness measurement framework to calculate the confidence values for the triples that quantify its semantic correctness and the true degree of the facts expressed. It can be used not only to detect and eliminate errors in the KG but also to identify new triples to improve the KG. The framework is a crisscrossing neural network structure. It synthesizes the internal semantic information in the triples and the global inference information of the KG to achieve the trustworthiness measurement and fusion in the three levels of entity-level, relationship-level, and KG-global-level. We conducted experiments on the common dataset FB15K (from Freebase) and analyzed the validity of the model's output confidence values. We also tested the framework in the knowledge graph error detection or completion tasks. The experimental results showed that compared with other models, our model achieved significant and consistent improvements on the above tasks, further confirming the capabilities of our model.


翻译:知识图( KG) 使用三进制来描述真实世界中的事实。 它被广泛用于对大数据进行智能分析和理解。 在构建KG时, 特别是在自动化建设过程中, 不可避免地会引入一些噪音和错误或忽略许多知识。 但是, 基于KG及其基本应用的学习任务都假定KG的知识完全正确, 并不可避免地带来潜在的错误。 因此, 在本文件中, 我们建立了一个统一的知识图三级信任度测量框架, 以计算量化其语义正确性和所表述事实真实程度的三进制的信任值。 在构建KG的过程中, 不仅可以发现和消除错误, 而且还可以确定新的三进制来改进KG。 这个框架是一个跨越神经网络结构的精准。 它综合了KG的三进制内部语义信息, 以及KG的全球推断信息, 以在实体、 关系层次和 KG- 全球层次的三个层次上实现可信度衡量和融合。 我们在共同数据设置的模型上进行了实验, 对比了FB 的正确性测试了我们所测试的其他模型。

8
下载
关闭预览

相关内容

17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
机器学习研究会
6+阅读 · 2018年1月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Arxiv
4+阅读 · 2018年11月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
机器学习研究会
6+阅读 · 2018年1月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员