题目: Graph Summarization Methods and Applications: A Survey

摘要:

虽然计算资源的进步使处理大量数据成为可能,但人类识别这些数据模式的能力并没有相应提高。因此,压缩和简化数据的高效计算方法对于提取可操作的见解变得至关重要。特别是,虽然对数据摘要技术进行了广泛的研究,但直到最近才开始流行对相互关联的数据或图进行汇总。这项调查是一个结构化的,全面的概述了最先进的方法,以总结图形数据。我们首先讨论了图形摘要背后的动机和挑战。然后,我们根据作为输入的图形类型对摘要方法进行分类,并根据核心方法进一步组织每个类别。最后,我们讨论了总结在真实世界图上的应用,并通过描述该领域的一些开放问题进行了总结。

作者简介:

Yike Liu是密西根大学物理系五年级的博士生,也是计算机科学与工程系的一名硕士研究生。我是叶杰平教授的顾问。主要研究方向是深度学习和强化学习,尤其是在交通数据上的应用。在此之前,从事过基于图形的机器学习和数据挖掘,特别是图形总结和图形聚类,在这些工作中,开发了图形挖掘算法,帮助更好地理解底层的图形组织并理解它。

Tara Safavi是密西根大学博士研究生,研究重点是知识表示及其在以人为中心的任务中的使用、评估和解释,还对更广泛的AI+社会问题感兴趣,比如隐私、偏见和环境可持续性。研究目前得到了美国国家科学基金会(NSF)研究生奖学金和谷歌女性科技创造者奖学金的支持。

成为VIP会员查看完整内容
42

相关内容

Gartner:2020年十大战略性技术趋势, 47页pdf
专知
25+阅读 · 2020年3月10日
2019->2020必看的十篇「深度学习领域综述」论文
极市平台
23+阅读 · 2020年1月2日
【ACL】文本摘要研究工作总结
专知
26+阅读 · 2019年8月10日
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
网络表示学习综述:一文理解Network Embedding
PaperWeekly
34+阅读 · 2018年8月14日
网络表示学习领域(NRL/NE)必读论文汇总
AI科技评论
16+阅读 · 2018年2月18日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
17+阅读 · 2019年3月28日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
相关资讯
Gartner:2020年十大战略性技术趋势, 47页pdf
专知
25+阅读 · 2020年3月10日
2019->2020必看的十篇「深度学习领域综述」论文
极市平台
23+阅读 · 2020年1月2日
【ACL】文本摘要研究工作总结
专知
26+阅读 · 2019年8月10日
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
网络表示学习综述:一文理解Network Embedding
PaperWeekly
34+阅读 · 2018年8月14日
网络表示学习领域(NRL/NE)必读论文汇总
AI科技评论
16+阅读 · 2018年2月18日
相关论文
Arxiv
38+阅读 · 2020年3月10日
Arxiv
17+阅读 · 2019年3月28日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
5+阅读 · 2017年4月12日
微信扫码咨询专知VIP会员