题目: Graph Summarization Methods and Applications: A Survey
摘要:
虽然计算资源的进步使处理大量数据成为可能,但人类识别这些数据模式的能力并没有相应提高。因此,压缩和简化数据的高效计算方法对于提取可操作的见解变得至关重要。特别是,虽然对数据摘要技术进行了广泛的研究,但直到最近才开始流行对相互关联的数据或图进行汇总。这项调查是一个结构化的,全面的概述了最先进的方法,以总结图形数据。我们首先讨论了图形摘要背后的动机和挑战。然后,我们根据作为输入的图形类型对摘要方法进行分类,并根据核心方法进一步组织每个类别。最后,我们讨论了总结在真实世界图上的应用,并通过描述该领域的一些开放问题进行了总结。
作者简介:
Yike Liu是密西根大学物理系五年级的博士生,也是计算机科学与工程系的一名硕士研究生。我是叶杰平教授的顾问。主要研究方向是深度学习和强化学习,尤其是在交通数据上的应用。在此之前,从事过基于图形的机器学习和数据挖掘,特别是图形总结和图形聚类,在这些工作中,开发了图形挖掘算法,帮助更好地理解底层的图形组织并理解它。
Tara Safavi是密西根大学博士研究生,研究重点是知识表示及其在以人为中心的任务中的使用、评估和解释,还对更广泛的AI+社会问题感兴趣,比如隐私、偏见和环境可持续性。研究目前得到了美国国家科学基金会(NSF)研究生奖学金和谷歌女性科技创造者奖学金的支持。