We develop a uniform coalgebraic approach to J\'onsson-Tarski and Thomason type dualities for various classes of neighborhood frames and neighborhood algebras. In the first part of the paper we construct an endofunctor on the category of complete and atomic Boolean algebras that is dual to the double powerset functor on $\mathsf{Set}$. This allows us to show that Thomason duality for neighborhood frames can be viewed as an algebra-coalgebra duality. We generalize this approach to any class of algebras for an endofunctor presented by one-step axioms in the language of infinitary modal logic. As a consequence, we obtain a uniform approach to dualities for various classes of neighborhood frames, including monotone neighborhood frames, pretopological spaces, and topological spaces. In the second part of the paper we develop a coalgebraic approach to J\'{o}nsson-Tarski duality for neighborhood algebras and descriptive neighborhood frames. We introduce an analogue of the Vietoris endofunctor on the category of Stone spaces and show that descriptive neighborhood frames are isomorphic to coalgebras for this endofunctor. This allows us to obtain a coalgebraic proof of the duality between descriptive neighborhood frames and neighborhood algebras. Using one-step axioms in the language of finitary modal logic, we restrict this duality to other classes of neighborhood algebras studied in the literature, including monotone modal algebras and contingency algebras. We conclude the paper by connecting the two types of dualities via canonical extensions, and discuss when these extensions are functorial.
翻译:我们为J\'onsson-Tarski 和Thomason 开发了一种统一的煤星格方法。 在文件的第一部分中, 我们为邻里框架和邻里代数的不同类别开发了一种统一的煤星格方法。 在文件的第一部分中, 我们为完整和原子布伦代代数的类别构建了一种最终值。 这是美元上的双电元代数的双重功能。 这让我们可以显示, 邻里框架的Thomason双重性可以被视为代数- coalge 的双重性。 我们将这种方法推广到任何等级的代数, 由一步的直径逻辑和邻里代代数所呈现的内分数。 由此, 我们获得了一种统一的方法, 包括单调邻里区框架、 前方空间和顶层空间。 在文件的第二部分中, 我们为邻里代代数的代数代数代数和描述性邻里框中, 我们用一个基数的代数代代数的代数的代数, 代数的代数的代数的代数级代数的代数, 代代代代代代数的代代代代代代代代代代代数的代代代代数, 代代代代数的代代数的代数的代数的代数的代数, 代数的代数的代数的代数的代数, 以代数的代数的代数的代数的代数的代数的代数的代数的代数, 代数的代数的代数, 代数的代数的代数的代数的代数, 代数的代数的代数的代数的代数的代数, 代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数, 代数的代数的代数, 代数, 代数代数以代数以比, 代数的代相, 代数的代的代数, 代的代的代数以代数以代数的代的代的代数以代数的代数的代数, 代数的代数的代的代