Existing person re-identification (re-id) methods are stuck when deployed to a new unseen scenario despite the success in cross-camera person matching. Recent efforts have been substantially devoted to domain adaptive person re-id where extensive unlabeled data in the new scenario are utilized in a transductive learning manner. However, for each scenario, it is required to first collect enough data and then train such a domain adaptive re-id model, thus restricting their practical application. Instead, we aim to explore multiple labeled datasets to learn generalized domain-invariant representations for person re-id, which is expected universally effective for each new-coming re-id scenario. To pursue practicability in real-world systems, we collect all the person re-id datasets (20 datasets) in this field and select the three most frequently used datasets (i.e., Market1501, DukeMTMC, and MSMT17) as unseen target domains. In addition, we develop DataHunter that collects over 300K+ weak annotated images named YouTube-Human from YouTube street-view videos, which joins 17 remaining full labeled datasets to form multiple source domains. On such a large and challenging benchmark called FastHuman (~440K+ labeled images), we further propose a simple yet effective Semi-Supervised Knowledge Distillation (SSKD) framework. SSKD effectively exploits the weakly annotated data by assigning soft pseudo labels to YouTube-Human to improve models' generalization ability. Experiments on several protocols verify the effectiveness of the proposed SSKD framework on domain generalizable person re-id, which is even comparable to supervised learning on the target domains. Lastly, but most importantly, we hope the proposed benchmark FastHuman could bring the next development of domain generalizable person re-id algorithms.


翻译:尽管跨相机人匹配成功,但在将现有个人重新定位(重新定位)方法部署到新的看不见情景时,这些方法被卡住。最近的努力已大量投入到领域适应性的人重新定位上,在新情景中,大量无标签的数据以感应式学习的方式被利用。然而,对于每种情景,都需要首先收集足够的数据,然后培训这样的域适应性重新定位模型,从而限制其实际应用。相反,我们的目标是探索多个标签化数据集,以学习个人重新定位的普遍域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域内域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域内、 域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域内域内域内域域内内内内域域内内内内内域域内内内内内内内内内内内内内内内内内内较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较较内内内内内内内内内内内域域内内内内内较较较较较较较较较较内内内内域域域域内

0
下载
关闭预览

相关内容

专知会员服务
20+阅读 · 2021年5月1日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
4+阅读 · 2018年5月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员