We define notions of differentiability for maps from and to the space of persistence barcodes. Inspired by the theory of diffeological spaces, the proposed framework uses lifts to the space of ordered barcodes, from which derivatives can be computed. The two derived notions of differentiability (respectively from and to the space of barcodes) combine together naturally to produce a chain rule that enables the use of gradient descent for objective functions factoring through the space of barcodes. We illustrate the versatility of this framework by showing how it can be used to analyze the smoothness of various parametrized families of filtrations arising in topological data analysis.
翻译:我们界定了地图与条形码之间和与持久性条形码空间的差异概念。在地籍空间理论的启发下,拟议框架利用定购条形码的空间进行提升,从中可以计算衍生物。两个衍生的可变性概念(分别与条形码空间和条形码空间)自然地结合在一起,形成一条规则,通过条形码空间将梯度下降用于客观功能的乘数。我们通过展示如何利用这一框架来分析地形学数据分析中出现的各种光化家庭过滤的顺利性来说明这一框架的多功能。