Motivated both by theoretical and practical considerations in topological data analysis, we generalize the $p$-Wasserstein distance on barcodes to multiparameter persistence modules. For each $p\in [1,\infty]$, we in fact introduce two such generalizations $d_{\mathcal I}^p$ and $d_{\mathcal M}^p$, such that $d_{\mathcal I}^\infty$ equals the interleaving distance and $d_{\mathcal M}^\infty$ equals the matching distance. We show that $d_{\mathcal M}^p\leq d_{\mathcal I}^p$ for all $p\in [1,\infty]$, extending an observation of Landi in the $p=\infty$ case. We observe that the distances $d_{\mathcal M}^p$ can be efficiently approximated. Finally, we show that on 1- or 2-parameter persistence modules over prime fields, $d_{\mathcal I}^p$ is the universal (i.e., largest) metric satisfying a natural stability property; our result extends a stability result of Skraba and Turner for the $p$-Wasserstein distance on barcodes in the 1-parameter case, and is also a close analogue of a universality property for the interleaving distance given by the second author. In a companion paper, we apply some of these results to study the stability of ($2$-parameter) multicover persistent homology.
翻译:受地形数据分析理论和实践考虑的激励,我们将条形码上的美元-瓦瑟斯坦距离(Wasserstein)与多参数持久性模块相提并论。对于每1美元[1,\infty]美元,我们实际上引入了两种此类通用($d ⁇ mathcal I ⁇ p美元和$d ⁇ mathcal M ⁇ p$),这样一来,美元与间距相等,而美元-mathcal M ⁇ infty美元与相匹配距离相等。我们显示,对于每1美元[1,\infty]美元,每1美元,我们实际上就引入了两种此类通用的美元[p>m1,美元/infty]美元。我们观察到,美元-mathcalmcal M ⁇ ptytal 美元之间的距离可以有效地相近。最后,我们显示,在1或2个平方格的多维耐久模型模块中, 美元是全球通用的(i,i. pleqrq d’cal Ip$)。