Image signal processing (ISP) is crucial for camera imaging, and neural networks (NN) solutions are extensively deployed for daytime scenes. The lack of sufficient nighttime image dataset and insights on nighttime illumination characteristics poses a great challenge for high-quality rendering using existing NN ISPs. To tackle it, we first built a high-resolution nighttime RAW-RGB (NR2R) dataset with white balance and tone mapping annotated by expert professionals. Meanwhile, to best capture the characteristics of nighttime illumination light sources, we develop the CBUnet, a two-stage NN ISP to cascade the compensation of color and brightness attributes. Experiments show that our method has better visual quality compared to traditional ISP pipeline, and is ranked at the second place in the NTIRE 2022 Night Photography Rendering Challenge for two tracks by respective People's and Professional Photographer's choices. The code and relevant materials are avaiable on our website: https://njuvision.github.io/CBUnet.
翻译:图像信号处理(ISP)对于照相机成像至关重要,神经网络(NN)的解决方案被广泛用于白天的场景; 缺乏足够的夜间图像数据集和对夜间照明特性的洞察力,对利用现有的NNISIS的高质量成像提出了巨大挑战。 为了解决这个问题,我们首先建立了一个高清晰的夜间RAW-RGB(NR2R)数据集,配有白色平衡和专家专业人员的声调图解。与此同时,为了最好地捕捉夜间照明源的特性,我们开发了CBUnet,这是一个两阶段的NNISP,以扩大颜色和亮度的补偿。实验表明,我们的方法比传统的ISP管道具有更好的视觉质量,并且位于2022年NTRIRE的第二位,由不同的人民和专业摄影师选择的两条轨道上。代码和相关材料可以在我们的网站https://njuvision.github.io/CBUnet上查阅。