Image signal processing (ISP) is crucial for camera imaging, and neural networks (NN) solutions are extensively deployed for daytime scenes. The lack of sufficient nighttime image dataset and insights on nighttime illumination characteristics poses a great challenge for high-quality rendering using existing NN ISPs. To tackle it, we first built a high-resolution nighttime RAW-RGB (NR2R) dataset with white balance and tone mapping annotated by expert professionals. Meanwhile, to best capture the characteristics of nighttime illumination light sources, we develop the CBUnet, a two-stage NN ISP to cascade the compensation of color and brightness attributes. Experiments show that our method has better visual quality compared to traditional ISP pipeline, and is ranked at the second place in the NTIRE 2022 Night Photography Rendering Challenge for two tracks by respective People's and Professional Photographer's choices. The code and relevant materials are avaiable on our website: https://njuvision.github.io/CBUnet.


翻译:图像信号处理(ISP)对于照相机成像至关重要,神经网络(NN)的解决方案被广泛用于白天的场景; 缺乏足够的夜间图像数据集和对夜间照明特性的洞察力,对利用现有的NNISIS的高质量成像提出了巨大挑战。 为了解决这个问题,我们首先建立了一个高清晰的夜间RAW-RGB(NR2R)数据集,配有白色平衡和专家专业人员的声调图解。与此同时,为了最好地捕捉夜间照明源的特性,我们开发了CBUnet,这是一个两阶段的NNISP,以扩大颜色和亮度的补偿。实验表明,我们的方法比传统的ISP管道具有更好的视觉质量,并且位于2022年NTRIRE的第二位,由不同的人民和专业摄影师选择的两条轨道上。代码和相关材料可以在我们的网站https://njuvision.github.io/CBUnet上查阅。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
13+阅读 · 2020年8月3日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员