Blur artifacts can seriously degrade the visual quality of images, and numerous deblurring methods have been proposed for specific scenarios. However, in most real-world images, blur is caused by different factors, e.g., motion and defocus. In this paper, we address how different deblurring methods perform in the case of multiple types of blur. For in-depth performance evaluation, we construct a new large-scale multi-cause image deblurring dataset (called MC-Blur), including real-world and synthesized blurry images with mixed factors of blurs. The images in the proposed MC-Blur dataset are collected using different techniques: averaging sharp images captured by a 1000-fps high-speed camera, convolving Ultra-High-Definition (UHD) sharp images with large-size kernels, adding defocus to images, and real-world blurry images captured by various camera models. Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios, analyze their efficiency, and investigate the built dataset's capacity. These benchmarking results provide a comprehensive overview of the advantages and limitations of current deblurring methods, and reveal the advances of our dataset.
翻译:模糊的工艺品可以严重降低图像的视觉质量,并且已经为具体情景提出了许多模糊的图像。 但是,在大多数真实世界的图像中,模糊是由不同因素造成的,例如运动和脱焦。 在本文中,我们讨论了在多种模糊类型的情况下不同模糊的模糊方法是如何表现的。为了深入的性能评估,我们设计了一个新的大型多层次的图像模糊化数据集(称为MC-Blur),包括真实世界和合成的模糊图像,以及模糊的混合因素。在拟议的MC-Blur数据集中,图像是使用不同的技术收集的:通过1000英尺高速相机平均采集的锐利图像,涉及超高清晰度(UHD)与大型内核的锐化图像,增加了图像的焦点,以及由各种相机模型采集的真实世界模糊的图像。根据MC-Blur数据集,我们进行了广泛的基准化研究,以比较不同情景中的SOTA方法,分析其效率,并调查了当前数据进展的成熟性差,这些基准结果提供了我们的数据的模型的优势。