Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We introduce a registration loss for weakly supervised image translation between domains that does not require perfectly aligned training data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN towards the desired translation. We complement this loss with a structure preserving constraint based on contrastive learning, which prevents blurring and content shifts due to overfitting. We apply this method to the registration of histological sections to MRI slices, a key step in 3D histology reconstruction. Results on two different public datasets show improvements over registration based on mutual information (13% reduction in landmark error) and synthesis-based algorithms such as CycleGAN (11% reduction), and are comparable to a registration CNN with label supervision. Code and data are publicly available at \url{https://github.com/acasamitjana/SynthByReg}
翻译:由于缺乏客观功能,非线性跨时装登记往往具有挑战性,因为缺乏客观功能,而这些功能是协调的好替代物。 我们在此建议一种综合逐个登记方法,将这一问题转换为较容易的时装任务。 我们在不需要完全一致的培训数据的领域之间引入了监督不力的图像翻译的登记损失。 这种损失在登记 U-Net 上加上了冷冻重量的资本,将合成CNN 转化为理想的翻译。 我们用一种基于对比学习的结构来补充这一损失,以保持限制,防止因过度装配而造成的模糊和内容转移。 我们将这种方法应用于MRI 切片,这是3D 历史学重建的关键步骤。 两种不同的公共数据集的结果显示,基于相互信息(里程碑错误减少13 % ) 和综合算法(如CyellGAN (减少11% ) ) 的登记得到了改进, 与有标签监管的CNN登记相类似。 代码和数据公布在\ url{https://github.com/asasamitjana/ SynByReg}