We discuss a general definition of likelihood function in terms of Radon-Nikod\'{y}m derivatives. The definition is validated by the Likelihood Principle once we establish a result regarding the proportionality of likelihood functions under different dominating measures. This general framework is particularly useful when there exists no or more than one obvious choice for a dominating measure as in some infinite-dimensional models. We discuss the importance of considering continuous versions of densities and how these are related to the Likelihood Principle and the basic concept of likelihood. We also discuss the use of the predictive measure as a dominating measure in the Bayesian approach. Finally, some examples illustrate the general definition of likelihood function and the importance of choosing particular dominating measures in some cases.
翻译:我们从Radon-Nikod\'{y}m衍生物的角度讨论可能性功能的一般定义。 一旦我们确定了不同占支配地位措施下可能性功能的相称性结果,该定义就由 " 相似性原则 " 加以验证。当像某些无限的模型一样,对于支配性措施没有或只有一个明显的选择时,这一总体框架特别有用。我们讨论了考虑连续的密度版本的重要性,以及这些因素如何与 " 相似性原则 " 和 " 可能性基本概念 " 相关。我们还讨论了将预测性措施用作巴耶西亚方法中的支配性措施的问题。最后,一些例子说明了可能性功能的一般定义,以及在某些情况下选择特定占支配地位措施的重要性。