Time-to-event endpoints show an increasing popularity in phase II cancer trials. The standard statistical tool for such endpoints in one-armed trials is the one-sample log-rank test. It is widely known, that the asymptotic providing the correctness of this test does not come into effect to full extent for small sample sizes. There have already been some attempts to solve this problem. While some do not allow easy power and sample size calculations, others lack a clear theoretical motivation and require further considerations. The problem itself can partly be attributed to the dependence of the compensated counting process and its variance estimator. We provide a framework in which the variance estimator can be flexibly adopted to the present situation while maintaining its asymptotical properties. We exemplarily suggest a variance estimator which is uncorrelated to the compensated counting process. Furthermore, we provide sample size and power calculations for any approach fitting into our framework. Finally, we compare several methods via simulation studies and the hypothetical setup of a Phase II trial based on real world data.


翻译:时间到活动终点点在第二阶段癌症试验中越来越受欢迎。 单臂试验中这类终点的标准统计工具是一模一样的日志测试。 众所周知, 提供这一测试的正确性的无症状并不完全对小样尺寸产生效果。 已经尝试过解决这个问题。 虽然有些人不允许容易计算权力和样本大小, 但另一些人缺乏明确的理论动机, 需要进一步考虑。 问题本身部分可归因于补偿计数过程及其差异估计器的依赖性。 我们提供了一个框架, 使差异估计器能够在保持其无症状特性的同时灵活地适应当前情况。 我们举例地建议一个差异估计器, 与补偿计数过程无关。 此外, 我们为适合我们框架的任何方法提供抽样规模和权力计算。 最后, 我们比较了几种方法, 通过模拟研究和基于真实世界数据的假设设置第二阶段试验。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员