The problem of scheduling with testing in the framework of explorable uncertainty models environments where some preliminary action can influence the duration of a task. In the model, each job has an unknown processing time that can be revealed by running a test. Alternatively, jobs may be run untested for the duration of a given upper limit. Recently, D\"urr et al. [5] have studied the setting where all testing times are of unit size and have given lower and upper bounds for the objectives of minimizing the sum of completion times and the makespan on a single machine. In this paper, we extend the problem to non-uniform testing times and present the first competitive algorithms. The general setting is motivated for example by online user surveys for market prediction or querying centralized databases in distributed computing. Introducing general testing times gives the problem a new flavor and requires updated methods with new techniques in the analysis. We present constant competitive ratios for the objective of minimizing the sum of completion times in the deterministic case, both in the non-preemptive and preemptive setting. For the preemptive setting, we additionally give a first lower bound. We also present a randomized algorithm with improved competitive ratio. Furthermore, we give tight competitive ratios for the objective of minimizing the makespan, both in the deterministic and the randomized setting.
翻译:在可探索的不确定模型环境中进行测试的问题,有些初步行动可以影响任务的持续时间。在模型中,每个工作都有未知的处理时间,可以通过测试揭示出来。或者,在某一上限的期限内,工作可能未经测试。最近,D\'urr等人[5]研究了所有测试时间单位大小的设置,并给出了最小化完成时间总和和和在单一机器上铸造的上下限。在本文中,我们将问题扩大到非统一测试时间,并提出了第一个竞争性算法。一般设置的动机是市场预测在线用户调查或分布式计算中查询中央数据库。引入一般测试时间给问题带来一种新的味道,要求用新的分析技术更新方法。我们在非先发制人和先发制人的情况下,为最大限度地减少完成时间总和的目标提出了持续的竞争比率。在先发制人的情况下,我们给先发制人以第一个较低的约束。我们还提出一个较低的约束。我们提出一个总体设置的动机,例如,通过在线用户调查进行市场预测或查询中央数据库的动机。引入一般测试时间,给问题以新的口味,要求用新的方法分析中采用新的方法。我们在非先发制人和先发制人和先发制人制人制人制人制人制人制人制人制下,我们最严格的竞争比率。我们以最严格地确定竞争比率。