We study the fair allocation of undesirable indivisible items, or chores. While the case of desirable indivisible items (or goods) is extensively studied, with many results known for different notions of fairness, less is known about the fair division of chores. We study the envy-free division of chores, and make three contributions. First, we show that determining the existence of an envy-free allocation is NP-complete, even in the simple case when agents have binary additive valuations. Second, we provide a polynomial-time algorithm for computing an allocation that satisfies envy-freeness up to one chore (EF1), correcting an existing proof in the literature. A straightforward modification of our algorithm can be used to compute an EF1 allocation for doubly monotone instances (wherein each agent can partition the set of items into objective goods and objective chores). Our third result applies to a mixed resources model consisting of indivisible items and a divisible, undesirable heterogeneous resource (i.e., a bad cake). We show that there always exists an allocation that satisfies envy-freeness for mixed resources (EFM) in this setting, complementing a recent result of Bei et al. (Art. Int. 2021) for indivisible goods and divisible cake.
翻译:我们研究了不可取的不可分割物品或杂活的公平分配问题。虽然对理想的不可分割物品(或货物)的情况进行了广泛研究,以不同的公平概念而著称了许多成果,但人们对公平分工的了解较少。我们研究了无嫉妒地分担家务的做法,作出了三项贡献。首先,我们表明,确定是否存在无嫉妒地分配是完全的,即使在代理人有二进制添加值的简单情况下也是如此。第二,我们提供了一种多元时间算法,用于计算一种满足嫉妒无味至一小节(EF1)的分配,纠正文献中的现有证据。对我们的算法的简单修改可用于计算EF1分配的双重单一情况(每个代理人可以将物品分成客观物品和客观工作),我们的第三个结果适用于由不可分割物品和易变、不相的混合资源(即坏蛋糕)组成的混合资源模式。我们表明,在这个环境里,始终存在着一种满足混合资源(EFM)无嫉妒现象的分配,补充了Be et al. (Art.Int 20 and discal) 和“不可分化的蛋糕”的结果。(Art.) (Art. 20)。