Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest in a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain, $Y:=[-1,1]^\mathbb{N}$. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al, 2020, arXiv:2005.02565) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity. In this way we show both where the theory developed in (Bonito et al 2020) depends on being in the setting of parametric PDEs with affine diffusion coefficients, and also expand the previous result to include more general types of parametric PDEs.
翻译:基于对准部分差异方程(PDEs)类别的非线性近似结果,我们力求更好地了解所谓的图书馆近似功能,即可计算无限变量数的分析函数。当利益功能是某类参数PDE的解决方案时,最近的结果(Bonito等人,2020年,ArXiv:2005.02565)证明它与实现预期目标准确性所需的空间数量有上层联系。在本文的设置中,我们使用一个由足够小的(重新缩放的)参数域的长方形次域(Y:[1,1,1,1, ⁇ -mathb{N}$)的本地泰勒近似近似结果。我们用这种方式来显示在(Bonito等人等人等人,2020年,ArXiv:2005.0265565年)的某类参数中发展出的理论的解决方案是否包括了先前的PDEalimicalgresmal,而现在将PDEalizalsmissional 也取决于先前的PDIalmissalsmissional。