Joint modeling longitudinal and survival data offers many advantages such as addressing measurement error and missing data in the longitudinal processes, understanding and quantifying the association between the longitudinal markers and the survival events and predicting the risk of events based on the longitudinal markers. A joint model involves multiple submodels (one for each longitudinal/survival outcome) usually linked together through correlated or shared random effects. Their estimation is computationally expensive (particularly due to a multidimensional integration of the likelihood over the random effects distribution) so that inference methods become rapidly intractable, and restricts applications of joint models to a small number of longitudinal markers and/or random effects. We introduce a Bayesian approximation based on the Integrated Nested Laplace Approximation algorithm implemented in the R package R-INLA to alleviate the computational burden and allow the estimation of multivariate joint models with less restrictions. Our simulation studies show that R-INLA substantially reduces the computation time and the variability of the parameter estimates compared to alternative estimation strategies. We further apply the methodology to analyze 5 longitudinal markers (3 continuous, 1 count, 1 binary, and 16 random effects) and competing risks of death and transplantation in a clinical trial on primary biliary cholangitis. R-INLA provides a fast and reliable inference technique for applying joint models to the complex multivariate data encountered in health research.
翻译:联合建模纵向和生存数据具有许多优势,例如处理纵向进程中的测量错误和缺失数据,了解和量化纵向标记与生存事件之间的联系,根据纵向标记预测事件的风险。一个联合模型涉及多个子模型(每个纵向/生存结果一个模型),通常通过关联效应或共享随机效应联系在一起。它们的估算在计算上成本很高(特别是由于随机效应分布可能性的多层面整合),从而推论方法变得迅速难以解决,并将联合模型的应用限制在少数纵向标记和(或)随机效应上。我们根据R-INLA包中实施的“综合Nested Laplace Applocrosimation 算法”采用巴伊西亚近似法,以减轻计算负担,并允许在限制较少的情况下估算多变联合模型。我们的模拟研究表明,R-INLA大大缩短了计算时间和参数估计的变异性,与替代估算战略相比,我们进一步运用了方法,对五种纵向标记(3个连续的、1个计数、1个双数、1个双数和16个随机风险)进行分析,在Rbil快速移植中进行可靠的临床试验和16次随机结果的快速试验。