Linear regression is a fundamental tool for statistical analysis, which has motivated the development of linear regression methods that satisfy provable privacy guarantees so that the learned model reveals little about any one data point used to construct it. Most existing privacy-preserving linear regression methods rely on the well-established framework of differential privacy, while the newly proposed PAC Privacy has not yet been explored in this context. In this paper, we systematically compare linear regression models trained with differential privacy and PAC privacy across three real-world datasets, observing several key findings that impact the performance of privacy-preserving linear regression.
翻译:暂无翻译