Humans tend to strongly agree on ratings on a scale for extreme cases (e.g., a CAT is judged as very concrete), but judgements on mid-scale words exhibit more disagreement. Yet, collected rating norms are heavily exploited across disciplines. Our study focuses on concreteness ratings and (i) implements correlations and supervised classification to identify salient multi-modal characteristics of mid-scale words, and (ii) applies a hard clustering to identify patterns of systematic disagreement across raters. Our results suggest to either fine-tune or filter mid-scale target words before utilising them.
翻译:暂无翻译