This short note considers the problem of testing the null hypothesis that the mean values of two multivariate normal variables are proportional. We show that the usual likelihood ratio $\chi^2$-test is valid non-asymptotically. Our proof relies on expressing the test statistic as the minimum eigenvalue of a Wishart variable and using a representation of its distribution using Legendre polynomials.
翻译:本简短说明考虑了检验两个多变正常变量平均值是成比例的无效假设的问题。 我们显示通常的概率比$\chi ⁇ 2$- 测试是有效的, 而不是非被动的。 我们的证据依赖于将测试统计数据表述为Wishart变量的最小元值, 并使用图林多义表示其分布。