Few-shot learning has recently emerged as a new challenge in the deep learning field: unlike conventional methods that train the deep neural networks (DNNs) with a large number of labeled data, it asks for the generalization of DNNs on new classes with few annotated samples. Recent advances in few-shot learning mainly focus on image classification while in this paper we focus on object detection. The initial explorations in few-shot object detection tend to simulate a classification scenario by using the positive proposals in images with respect to certain object class while discarding the negative proposals of that class. Negatives, especially hard negatives, however, are essential to the embedding space learning in few-shot object detection. In this paper, we restore the negative information in few-shot object detection by introducing a new negative- and positive-representative based metric learning framework and a new inference scheme with negative and positive representatives. We build our work on a recent few-shot pipeline RepMet with several new modules to encode negative information for both training and testing. Extensive experiments on ImageNet-LOC and PASCAL VOC show our method substantially improves the state-of-the-art few-shot object detection solutions. Our code is available at https://github.com/yang-yk/NP-RepMet.


翻译:在深层学习领域,最近出现了一项新的挑战:与用大量标签数据培训深神经网络的传统方法不同,它要求将DNN用于新类别,并附有少量附加说明的样本。最近一些短片学习的进展主要侧重于图像分类,而在本文中我们侧重于物体探测。一些短片物体探测的初步探索倾向于模拟一种分类设想,方法是使用某些物体类图像中的正面建议,同时放弃该类的负面建议。但是,负面,特别是硬负是将空间学习嵌入微粒物体探测中的关键。在本文中,我们通过采用新的负和正代表性的参数学习框架和新的推论计划,恢复少数物体探测中的负面信息。我们的工作建立在最近几发的管道RepetMetMet上,用几个新模块来为培训和测试输入负面信息。关于图像Net-LOC和PASAL VOC的大规模实验,对于在微粒物体探测中嵌入空间学习至关重要。我们在微粒子物体探测中展示了我们的方法,即引入了以负和正反向/正方码。

4
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
7+阅读 · 2018年12月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Arxiv
7+阅读 · 2018年12月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员