We present ObjectBox, a novel single-stage anchor-free and highly generalizable object detection approach. As opposed to both existing anchor-based and anchor-free detectors, which are more biased toward specific object scales in their label assignments, we use only object center locations as positive samples and treat all objects equally in different feature levels regardless of the objects' sizes or shapes. Specifically, our label assignment strategy considers the object center locations as shape- and size-agnostic anchors in an anchor-free fashion, and allows learning to occur at all scales for every object. To support this, we define new regression targets as the distances from two corners of the center cell location to the four sides of the bounding box. Moreover, to handle scale-variant objects, we propose a tailored IoU loss to deal with boxes with different sizes. As a result, our proposed object detector does not need any dataset-dependent hyperparameters to be tuned across datasets. We evaluate our method on MS-COCO 2017 and PASCAL VOC 2012 datasets, and compare our results to state-of-the-art methods. We observe that ObjectBox performs favorably in comparison to prior works. Furthermore, we perform rigorous ablation experiments to evaluate different components of our method. Our code is available at: https://github.com/MohsenZand/ObjectBox.
翻译:我们提出“ObjectBox ”, 这是一种新颖的单级无锚且高度通用的物体探测方法。 与现有的基于锚和无锚的探测器相比,这些探测器在标签任务中更偏向于特定对象尺度,我们只使用对象中心位置作为正样样本,而将所有物体同等地处理不同的特性水平,而不论对象大小或形状。 具体地说, 我们的标签分配战略将物体中心位置视为无锚和大小的无孔雀, 允许在每个物体的所有尺度上进行学习。 为了支持这一点, 我们将新的回归目标定义为从中心单元格位置的两个角落到捆绑框的四边之间的距离。 此外, 为了处理比例变量对象, 我们提出一个定制的IoU损失, 以便处理不同大小的框。 因此, 我们提议的物体探测器不需要在数据集之间调整任何基于形状和大小的超参数。 我们评估了我们关于MS- CO 2017 和 PCAL VOC 2012 的数据设置的方法, 并将我们的结果与状态- 艺术框的两边距比 。 我们观察了不同的实验方法 。