Convolutions are one of the most important operations in signal processing. They often involve large arrays and require significant computing time. Moreover, in practice, the signal data to be processed by convolution may be corrupted by noise. In this paper, we introduce a new method for computing the convolutions in the quantized tensor train (QTT) format and removing noise from data using the QTT decomposition. We demonstrate the performance of our method using a common mathematical model for synthetic aperture radar (SAR) processing that involves a sinc kernel and present the entire cost of decomposing the original data array, computing the convolutions, and then reformatting the data back into full arrays.
翻译:在信号处理中,革命是最重要的操作之一,它们往往涉及大型阵列,需要大量计算时间。此外,在实践中,要通过革命处理的信号数据可能会被噪音破坏。在本文中,我们采用了一种新的方法来计算量化的高压列列列(QTT)的演变情况,并用QTT分解法将噪音从数据中去除。我们用一个通用的合成孔径雷达(SAR)处理数学模型来显示我们的方法的性能,该模型涉及一个螺旋内核,并展示了将原始数据阵列分解、计算演变过程、然后将数据重新制成完整的阵列的全部费用。