While fast multipole methods (FMMs) are in widespread use for the rapid evaluation of potential fields governed by the Laplace, Helmholtz, Maxwell or Stokes equations, their coupling to high-order quadratures for evaluating layer potentials is still an area of active research. In three dimensions, a number of issues need to be addressed, including the specification of the surface as the union of high-order patches, the incorporation of accurate quadrature rules for integrating singular or weakly singular Green's functions on such patches, and their coupling to the oct-tree data structures on which the FMM separates near and far field interactions. Although the latter is straightforward for point distributions, the near field for a patch is determined by its physical dimensions, not the distribution of discretization points on the surface. Here, we present a general framework for efficiently coupling locally corrected quadratures with FMMs, relying primarily on what are called generalized Gaussian quadratures rules, supplemented by adaptive integration. The approach, however, is quite general and easily applicable to other schemes, such as Quadrature by Expansion (QBX). We also introduce a number of accelerations to reduce the cost of quadrature generation itself, and present several numerical examples of acoustic scattering that demonstrate the accuracy, robustness, and computational efficiency of the scheme. On a single core of an Intel i5 2.3GHz processor, a Fortran implementation of the scheme can generate near field quadrature corrections for between 1000 and 10,000 points per second, depending on the order of accuracy and the desired precision. A Fortran implementation of the algorithm described in this work is available at https://gitlab.com/fastalgorithms/fmm3dbie.


翻译:虽然快速多极方法(FMMM)被广泛用于快速评估Laplace、Helmholtz、Maxwell或Stokes等方程式管理的潜在字段,但它们与用于评估层潜力的高阶二次方程式的结合仍是一个积极研究的领域。在三个层面,需要解决若干问题,包括将表面指定为高阶补丁的结合,纳入精确的二次方程规则,以整合Green在此类补丁上的独一或微弱独一的功能,并将之与FMM在接近和远方的实地互动中分离的奥氏树类数据结构连接起来。尽管后者对点分布是直通的,但近方方的近方方方方方方方方方位生成一个截面,而不是表面上分解点的分布。在这里,我们提出了一个将本地修整的二次方位与调方格相结合的总体框架,主要依靠所谓的通用高尔氏二次方格规则,并辅之以适应整合。不过,这种方法在接近和远方方方方方方方方的域中非常普遍和容易适用于其他方案,例如Sqalalalalalalal deal dealal dealal deal deal deal sal sal sal sal speal sal sal sal sal sal ex ex sal sal sal sal speal sal ex ex ex a ex a ex sal ex ex ex ex ex ex ex ex ex ex sal ex sal ex a lavipepepeutal a ex sal sal sal lamental sal sal sal sal sal sal lamental sal sal sal sal sal sal sal sal a ex sal sal sal sal sal sal sal a ex a ex. ex sal sal sal a ex sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal laction laction ex a sal sal sal ex a sal sal

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
专知会员服务
72+阅读 · 2021年5月28日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员