A surface integral representation of Maxwell's equations allows the efficient electromagnetic (EM) modeling of three-dimensional structures with a two-dimensional discretization, via the boundary element method (BEM). However, existing BEM formulations either lead to a poorly conditioned system matrix for multiscale problems, or are computationally expensive for objects embedded in layered substrates. This article presents a new BEM formulation which leverages the surface equivalence principle and Buffa-Christiansen basis functions defined on a dual mesh, to obtain a well-conditioned system matrix suitable for multiscale EM modeling. Unlike existing methods involving dual meshes, the proposed formulation avoids the double-layer potential operator for the surrounding medium, which may be a stratified substrate requiring the use of an advanced Green's function. This feature greatly alleviates the computational expense associated with the use of Buffa-Christiansen functions. Numerical examples drawn from several applications, including remote sensing, chip-level EM analysis, and metasurface modeling, demonstrate speed-ups ranging from 3x to 7x compared to state-of-the-art formulations.


翻译:马克斯韦尔方程式表面整体表示法允许通过边界要素法(BEM)对三维结构进行高效的电磁(EM)建模,采用二维分解法(BEM)。然而,现有的BEM配方要么导致多尺度问题系统矩阵条件差,要么对嵌入层层基体的物体计算成本高昂。本条款提出了一个新的BEM配方,利用在双网状下界定的表面等同原则和Buffa-基督教基础功能,以获得适合于多尺度EM建模的完善的系统矩阵。与涉及双层模组的现有方法不同,拟议的配方避免了周围介质的双层潜在操作器,后者可能是需要使用先进的Green函数的分层分层操作器。这极大地降低了与使用Buffa-基督教函数相关的计算费用。从若干应用中提取的数值示例,包括遥感、芯片级EM分析以及元表建模,显示了从3x到7x之间的速度,与状态制式配方相比,从3x到7x不等。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员