In this paper, we develop a quadrature framework for large-scale kernel machines via a numerical integration representation. Considering that the integration domain and measure of typical kernels, e.g., Gaussian kernels, arc-cosine kernels, are fully symmetric, we leverage deterministic fully symmetric interpolatory rules to efficiently compute quadrature nodes and associated weights for kernel approximation. The developed interpolatory rules are able to reduce the number of needed nodes while retaining a high approximation accuracy. Further, we randomize the above deterministic rules by the classical Monte-Carlo sampling and control variates techniques with two merits: 1) The proposed stochastic rules make the dimension of the feature mapping flexibly varying, such that we can control the discrepancy between the original and approximate kernels by tuning the dimnension. 2) Our stochastic rules have nice statistical properties of unbiasedness and variance reduction with fast convergence rate. In addition, we elucidate the relationship between our deterministic/stochastic interpolatory rules and current quadrature rules for kernel approximation, including the sparse grids quadrature and stochastic spherical-radial rules, thereby unifying these methods under our framework. Experimental results on several benchmark datasets show that our methods compare favorably with other representative kernel approximation based methods.


翻译:在本文中,我们通过数字集成代表制,为大型内核机器制定了一个象形框架。考虑到典型内核(例如高山内核、弧-cosine内核等)的整合领域和测量标准是完全对称的,我们利用完全对称的确定性完全对称的内核规则,以有效地对象形节点和内核近端的相关重量进行计算。发达的内插规则能够减少所需节点的数量,同时保持高近似精确度。此外,我们用传统的蒙特卡洛抽样和控制变异技术来随机调整上述确定性规则,有两种优点:(1) 拟议的调查规则使地貌图的尺寸变异,这样我们就能通过调和调调度来控制原始和近似内核内核内核内核内核之间的差异。(2) 我们的随机规则具有良好的统计特性,即以快速汇合率减少偏差和差异。此外,我们用传统的确定性/内核内核比较规则来随机比较上述确定性规则之间的关系,包括根据我们的一些基内核级的内核定的内核结构,以及现在的内核实验性框架的内核化的内核结构规则。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员