Tracking multiple athletes in sports videos is a very challenging Multi-Object Tracking (MOT) task, since athletes often have the same appearance and are intimately covered with each other, making a common occlusion problem becomes an abhorrent duplicate detection. In this paper, the duplicate detection is newly and precisely defined as occlusion misreporting on the same athlete by multiple detection boxes in one frame. To address this problem, we meticulously design a novel transformer-based Duplicate Detection Decontaminator (D$^3$) for training, and a specific algorithm Rally-Hungarian (RH) for matching. Once duplicate detection occurs, D$^3$ immediately modifies the procedure by generating enhanced boxes losses. RH, triggered by the team sports substitution rules, is exceedingly suitable for sports videos. Moreover, to complement the tracking dataset that without shot changes, we release a new dataset based on sports video named RallyTrack. Extensive experiments on RallyTrack show that combining D$^3$ and RH can dramatically improve the tracking performance with 9.2 in MOTA and 4.5 in HOTA. Meanwhile, experiments on MOT-series and DanceTrack discover that D$^3$ can accelerate convergence during training, especially save up to 80 percent of the original training time on MOT17. Finally, our model, which is trained only with volleyball videos, can be applied directly to basketball and soccer videos for MAT, which shows priority of our method. Our dataset is available at https://github.com/heruihr/rallytrack.


翻译:在体育录像中追踪多个运动员是一项非常具有挑战性的多球跟踪任务,因为运动员经常有相同的外观,而且相互相互密切覆盖,共同的封闭问题成为令人憎恶的重复检测。在本文中,重复的检测被明确定义为通过多个检测框在一个框内对同一个运动员进行隐蔽误报。为了解决这个问题,我们精心设计了一个基于变压器的新变压器的重复检测脱色器(3美元)用于培训,并设计了一个用于匹配的具体的Rally-Hungarian(RH)算法。一旦发现重复,D$3美元就会立即通过产生强化的箱损失来改变程序。在团队体育替代规则下触发的RH,非常适合于体育视频。此外,为了补充不发生变化的跟踪数据集,我们发布了一个基于体育视频名为RallyTrack的新数据集。 在RallyTrack上进行的广泛实验显示,只有D3美元和RHRH的组合才能大大改进跟踪工作,在MOTA和HOTA$4.5中进行9.2和4.5的跟踪。同时,在MOT-ROTA中进行实验,在M-ROT-CS-CS-CR可以直接发现我们的原始培训过程中,在80-C-ROD-C-C-C-LVD-LVAL-T-T-T-T-S-T-T-T-T-S-S-T-T-T-S-LV上,在原始培训中,在80-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员