In this paper, we propose a hybrid approach for multi-object microbial cell segmentation. The approach combines an ML-based detection with a geometry-aware variational-based segmentation using B-splines that are parametrized based on a geometric model of the cell shape. The detection is done first using YOLOv5. In a second step, each detected cell is segmented individually. Thus, the segmentation only needs to be done on a per-cell basis, which makes it amenable to a variational approach that incorporates prior knowledge on the geometry. Here, the contour of the segmentation is modelled as closed uniform cubic B-spline, whose control points are parametrized using the known cell geometry. Compared to purely ML-based segmentation approaches, which need accurate segmentation maps as training data that are very laborious to produce, our method just needs bounding boxes as training data. Still, the proposed method performs on par with ML-based segmentation approaches usually used in this context. We study the performance of the proposed method on time-lapse microscopy data of Corynebacterium glutamicum.
翻译:在本文中,我们提出了多对象微生物细胞分离的混合方法。 这种方法将基于 ML 的检测与基于 B 的基于几何测量和基于变异的分解结合起来, 使用基于细胞形状几何模型的对称模型的B- 线进行对称。 检测首先使用 YOLOv5 进行。 第二步, 每个检测到的细胞单独进行分解。 因此, 分解只需要在每细胞的基础上进行, 这样它就可以采用包含先前几何学知识的变异方法。 这里, 分解的轮廓以封闭式统一立方体 B- 线为模型, 其控制点使用已知的细胞几何方法进行对称。 与纯粹基于 ML 的分解方法相比, 需要精确的分解图作为培训数据, 并且非常费力地生成。 我们的方法只需要将框作为培训数据来捆绑。 然而, 拟议的方法与通常在此背景下使用的基于 ML 的分解法进行演练。 我们研究关于Crynebactriumemymalmamimalmamicumcumcum cum 的延缩算方法的绩效。