Material Flow Analysis (MFA) is used to quantify and understand the life cycles of materials from production to end of use, which enables environmental, social and economic impacts and interventions. MFA is challenging as available data is often limited and uncertain, giving rise to an underdetermined system with an infinite number of solutions when attempting to calculate the values of all stocks and flows in the system. Bayesian statistics is an effective way to address these challenges as it rigorously quantifies uncertainty in the data and propagates it in a system flow model to provide the probabilities associated with model solutions. Furthermore, the Bayesian approach provides a natural way to incorporate useful domain knowledge about the system through the elicitation of the prior distribution. This paper presents a novel Bayesian approach to MFA. We propose a mass based framework that directly models the flow and change in stock variables in the system, including systems with simultaneous presence of stocks and disaggregation of processes. The proposed approach is demonstrated on a global aluminium cycle, under a scenario where there is a shortage of data, coupled with weakly informative priors that only require basic information on flows and change in stocks. Bayesian model checking helps to identify inconsistencies in the data, and the posterior distribution is used to identify the variables in the system with the most uncertainty, which can aid data collection. We numerically investigate the properties of our method in simulations, and show that in limited data settings, the elicitation of an informative prior can greatly improve the performance of Bayesian methods, including for both estimation accuracy and uncertainty quantification.


翻译:材料流动分析(MFA)用于量化和理解从生产到使用阶段的材料生命周期,从而产生环境、社会和经济影响和干预措施。MFA具有挑战性,因为现有数据往往有限和不确定,在试图计算系统中所有库存和流动的价值时,产生了一个不确定的系统,其解决办法为数不尽。Bayesian统计数据是应对这些挑战的一种有效方法,因为它严格量化了数据中的不确定性,并在一个系统流程模型中传播,以提供与模型解决方案相关的概率。此外,Bayesian方法提供了一种自然的方式,通过先前的发布,纳入关于该系统的有用域知识。本文介绍了一种新颖的Bayesian方法,在试图计算系统中的所有库存和流动的价值时,我们提出了一个基于质量的框架,直接模拟系统中的存量变量流动和变化,包括同时存在库存和流程分类的系统。在数据短缺的情况下,提议的方法是在全球铝循环中展示数据周期,同时提供缺乏信息的前期信息,只需要关于库存流动和变化的基本信息。Bayesian模型的检查最有助于查明信息流和存量变化的准确性,在先前的数据的收集中,我们所使用的数据和数据分析中,在分析中,在分析中,我们所使用的数据分析中可以显示数据分析数据的不确定性的不确定性的不确定性的不确定性的不确定性的不确定性和数据分析中可以说明。我们所使用的方法可以说明。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
83+阅读 · 2022年7月16日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员