Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.
翻译:连续的决定性点进程(DPPs)是具有许多统计应用的$\mathbb{R ⁇ d$的令人厌恶的点进程类别。 虽然已知其密度的明显表达方式,但过于复杂,无法直接用于最大的可能性估计。 在固定的案例中,建议使用Fourier序列近似,但仅限于矩形观测窗口,没有理论结果支持它。 在这项贡献中,我们用不同的方法来估计其可能性,通过观察窗口增长到$\mathbb{R ⁇ d$时的无症状行为。 这个新的近似并不局限于矩形窗口,比前一个窗口更快的计算速度,不需要任何调制参数,并且提供了一些理论理由。此外,它提供了估算相关估计估计值的无症状差异的明确公式。在对$\mathbb{R ⁇ d$的标准参数模型进行的模拟研究中评估了这些性能,并且与连续的DPP的通用替代估算方法相比是有利的。