Yoshua Bengio 说“因果关系对于机器学习的下一步进展非常重要“。” 深度学习包含了对静态数据集的学习,这使得人工智能非常擅长与相关性和关联相关的任务。然而,神经网络不能解释因果关系,也不能解释为什么这些联系和关联存在。他们也不擅长涉及想象力、推理和计划的任务。这反过来又限制了人工智能推广其学习并将其技能转移到其他相关环境的能力。 在本演讲中,Yoshua Bengio将介绍因果表示学习。
高层语义变量空间中的稀疏因子图 语义变量是因果的:代理,意图,可控对象 局部因果干预引起的分布变化(语义空间) 高层次语义变量/思想与单词/句子之间的简单映射 跨实例共享“通用规则”(作为参数),需要变量和间接 含义(例如,由编码器接地)是稳定和健壮的wrt变化在分发 信用分配只适用于短的因果链
https://www.youtube.com/watch?v=rKZJ0TJWvTk&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0