Much of the theory for the lasso in the linear model $Y = X \beta^* + \varepsilon$ hinges on the quantity $2 \| X^\top \varepsilon \|_{\infty} / n$, which we call the lasso's effective noise. Among other things, the effective noise plays an important role in finite-sample bounds for the lasso, the calibration of the lasso's tuning parameter, and inference on the parameter vector $\beta^*$. In this paper, we develop a bootstrap-based estimator of the quantiles of the effective noise. The estimator is fully data-driven, that is, does not require any additional tuning parameters. We equip our estimator with finite-sample guarantees and apply it to tuning parameter calibration for the lasso and to high-dimensional inference on the parameter vector $\beta^*$.


翻译:线性模型 $Y = X \ beta + \ varepsilon$ 中 的 lasso 理论大多取决于 $2 ⁇ X ⁇ top \ varepsilon ⁇ infty} / n$, 我们称之为 lasso 的有效噪音。 除其他外, 有效的噪音在 lasso 的有限分布范围、 lasso 调制参数的校准 和参数矢量 $\ beta $ 的推论 中起着重要作用 。 在本文中, 我们开发了一个基于靴子的 有效噪声量测算仪 。 估计器完全由数据驱动, 也就是说, 不需要额外的调控参数 。 我们为我们的估测器配备了 限定分布器的保证, 并应用它来调整 lasso 的参数校准参数和参数矢量 $\\ bita $ 。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
74+阅读 · 2022年4月6日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
68+阅读 · 2020年11月4日
专知会员服务
53+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Effective Java 在工作中的应用总结
阿里技术
0+阅读 · 2021年9月17日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Effective Java 在工作中的应用总结
阿里技术
0+阅读 · 2021年9月17日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员