To reduce multiuser interference and maximize the spectrum efficiency in orthogonal frequency division duplexing massive multiple-input multiple-output (MIMO) systems, the downlink channel state information (CSI) estimated at the user equipment (UE) is required at the base station (BS). This paper presents a novel method for massive MIMO CSI feedback via a one-sided deep learning framework. The CSI is compressed via linear projections at the UE, and is recovered at the BS using deep plug-and-play priors (PPP). Instead of using handcrafted regularizers for the wireless channel responses, the proposed approach, namely CSI-PPPNet, exploits a deep learning (DL) based denoisor in place of the proximal operator of the prior in an alternating optimization scheme. In this way, a DL model trained once for denoising can be repurposed for CSI recovery tasks with arbitrary linear projections. In addition to the one-for-all property, the one-sided framework relieves the burden of joint model training and model delivery and could be applied at UEs with limited device memories and computation power, in comparison to the two-sided autoencoder-based CSI feedback architecture. This opens new perspectives for DL-based CSI feedback. Extensive experiments over the open indoor and urban macro scenarios show the effectiveness of the proposed method.
翻译:为了减少多用户干扰并最大限度地提高正方位频率分化在无线频道响应的大规模多投入多产出(MIMO)系统中的谱率效率,基地台(BS)需要使用用户设备估算的下链通道状态信息(CSI),本文介绍了通过单面深层学习框架进行大规模MIMO CSI反馈的新方法。 CSI通过在UE通过线性预测压缩,并在BS使用深插接和剧前缀(PPPP)在BS回收。 拟议的方法,即CSI-PPPNet,不是使用手动的无线频道响应调节器,而是利用以深层次学习(DL)为基础的低调状态信息,以取代前方快速优化计划(UE)的准操作器操作器。这样,一个经过一次性培训的DL模型可以通过任意线性预测重新用于CSI回收任务。除了一对全方位属性外,单方位框架还减轻了联合模式培训和模型交付的负担,并且可以应用在UIS应用有限的设备记忆和模型反馈的深部位式平台,从而打开了C-C-C-Brodeal Floopal Fealal Fealalalal Areal Floveal ex view view view view的C-Silence-salal-sal-salal-sal-sal-I view-loudal-loudal-SI view-SI view-sal-sal-sal-sal-sal-sal-sal-lusal-lational-sal-ldal-lview-L ex-sal-sal-sal-sal-sal-ldal-I ex-I ex-sal-sal-sal-sal-I ex-lvical-lview-sal-sal-lviewal-lviewal-lviewal-lviewal-L-lal-sal-I。