Large language models (LLMs) are able to do accurate classification with zero or only a few examples (in-context learning). We show a prompting system that enables regression with uncertainty for in-context learning with frozen LLM (GPT-3, GPT-3.5, and GPT-4) models, allowing predictions without features or architecture tuning. By incorporating uncertainty, our approach enables Bayesian optimization for catalyst or molecule optimization using natural language, eliminating the need for training or simulation. Here, we performed the optimization using the synthesis procedure of catalysts to predict properties. Working with natural language mitigates difficulty synthesizability since the literal synthesis procedure is the model's input. We showed that in-context learning could improve past a model context window (maximum number of tokens the model can process at once) as data is gathered via example selection, allowing the model to scale better. Although our method does not outperform all baselines, it requires zero training, feature selection, and minimal computing while maintaining satisfactory performance. We also find Gaussian Process Regression on text embeddings is strong at Bayesian optimization. The code is available in our GitHub repository: https://github.com/ur-whitelab/BO-LIFT
翻译:大型语言模型(LLMs)能够在零个或仅有少量例子的情况下进行准确的分类(上下文学习)。我们展示了一种提示系统,利用冻结的LLMs(GPT-3,GPT-3.5和GPT-4)进行有不确定性的回归上下文学习,允许在不需要对特征或架构进行调整的情况下进行预测。通过结合不确定性,我们的方法使贝叶斯优化在使用自然语言进行催化剂或分子优化时变得可行,消除了训练和模拟的需要。在这里,我们使用催化剂的合成过程来预测其物性。使用自然语言可以缓解合成困难性,因为文字合成过程是模型的输入。我们展示了上下文学习可以通过示例选择来收集数据,从而使模型能够更好地扩展,超越模型上下文窗口(模型一次可以处理的最大标记数)。尽管我们的方法并未优于所有基线,但它不需要训练,特征选择和计算最少,同时保持了令人满意的性能。我们还发现基于文本嵌入的高斯过程回归在贝叶斯优化方面做得很好。代码可在我们的GitHub存储库中找到:https://github.com/ur-whitelab/BO-LIFT