Pruning aims to reduce the number of parameters while maintaining performance close to the original network. This work proposes a novel \emph{self-distillation} based pruning strategy, whereby the representational similarity between the pruned and unpruned versions of the same network is maximized. Unlike previous approaches that treat distillation and pruning separately, we use distillation to inform the pruning criteria, without requiring a separate student network as in knowledge distillation. We show that the proposed {\em cross-correlation objective for self-distilled pruning} implicitly encourages sparse solutions, naturally complementing magnitude-based pruning criteria. Experiments on the GLUE and XGLUE benchmarks show that self-distilled pruning increases mono- and cross-lingual language model performance. Self-distilled pruned models also outperform smaller Transformers with an equal number of parameters and are competitive against (6 times) larger distilled networks. We also observe that self-distillation (1) maximizes class separability, (2) increases the signal-to-noise ratio, and (3) converges faster after pruning steps, providing further insights into why self-distilled pruning improves generalization.


翻译:在保持与原始网络接近的性能的同时, 使用蒸馏法来减少参数数量, 并同时保持与原始网络的性能 。 这项工作提出了一个基于新颖的 emph{ 自我蒸馏} 的裁剪策略, 从而将同一网络的纯度和未纯度版本之间的代表性相似性最大化。 与以前分别处理蒸馏和纯度的方法不同, 我们使用蒸馏法来告知裁剪标准, 而不需要像知识蒸馏那样单独的学生网络 。 我们显示, 提议的 exem 交叉关系目标, 用于自我蒸馏 } 暗地鼓励稀释的解决方案, 自然补充基于规模的裁剪裁标准 。 GLUE 和 XGLUE 基准的实验表明, 自我蒸馏的裁剪裁会提高单一和跨语言模式的性能。 自蒸馏的模型也比较小的变形变形小, 参数相同, 并且对更大的蒸馏网络具有竞争力 ( 6 次) 。 我们还观察到, 自蒸馏法(1) 能够最大化的类 、 (2) 增加级 增加 信号到 进一步的普通的升级 步骤 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
BERT 瘦身之路:Distillation,Quantization,Pruning
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2021年9月30日
VIP会员
相关资讯
BERT 瘦身之路:Distillation,Quantization,Pruning
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员