We propose a trust-region stochastic sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic equality constraints. We consider a fully stochastic setting, where in each iteration a single sample is generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to employ indefinite Hessian matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for constrained optimization, our algorithm needs to address an infeasibility issue -- the linearized equality constraints and trust-region constraints might lead to infeasible SQP subproblems. In this regard, we propose an \textit{adaptive relaxation technique} to compute the trial step that consists of a normal step and a tangential step. To control the lengths of the two steps, we adaptively decompose the trust-region radius into two segments based on the proportions of the feasibility and optimality residuals to the full KKT residual. The normal step has a closed form, while the tangential step is solved from a trust-region subproblem, to which a solution ensuring the Cauchy reduction is sufficient for our study. We establish the global almost sure convergence guarantee for TR-StoSQP, and illustrate its empirical performance on both a subset of problems in the CUTEst test set and constrained logistic regression problems using data from the LIBSVM collection.
翻译:我们提出一个信任区域连续连续二次编程算法(TR-StoSQP),以解决非线性优化问题,包括随机目标和确定性平等限制。我们考虑一个完全随机化的环境,在每次迭代中产生单一样本,以估计客观梯度。这一算法适应性地选择信任区域半径,并与现有的线搜索StoSQP计划相比,使我们能够在SQP子问题中采用无限期的赫西亚矩阵(即,海珊不作修改)。作为限制优化的托管区域方法,我们的算法需要解决不可行的问题 -- -- 线性平等限制和信任区域限制可能导致无法对目标梯度进行估计。在这方面,我们提议一个确定性能的参数{适应性放松技术},以校正性步骤组成一个测试步骤。为了控制两个步骤的长度,我们调整性地将信任区域半径分成两个部分,即线性平等限制平等和信任区域的限制度问题 -- -- 线性平等限制SQP子参数的线性限制。在这方面,我们提出一个稳定性平比标准级的递校程的递定性测试性测试性研究,一个比例,而一个稳定性级级级的递解性级的递解的系统化的系统级的系统级的递减法, 和级平级平级的递解的递解法则则是一种平级的递解的级的级的精确级的级的分级的分级法, 。我们度是制的级性研究, 级的级的分级性能和制的分级法,, 将一个平级的递制的分级制的递制的分级性能和制的递制的递制的递制的递制的级性能和制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制,, 制的递制的递制的分级的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制的递制, 和制的递制的递制的递制的递制的递制的递制的递制