In this paper, we consider a class of nonconvex-nonconcave minimax problems, i.e., NC-PL minimax problems, whose objective functions satisfy the Polyak-$\L$ojasiewicz (PL) condition with respect to the inner variable. We propose a zeroth-order alternating gradient descent ascent (ZO-AGDA) algorithm and a zeroth-order variance reduced alternating gradient descent ascent (ZO-VRAGDA) algorithm for solving NC-PL minimax problem under the deterministic and the stochastic setting, respectively. The number of iterations to obtain an $\epsilon$-stationary point of ZO-AGDA and ZO-VRAGDA algorithm for solving NC-PL minimax problem is upper bounded by $\mathcal{O}(\varepsilon^{-2})$ and $\mathcal{O}(\varepsilon^{-3})$, respectively. To the best of our knowledge, they are the first two zeroth-order algorithms with the iteration complexity gurantee for solving NC-PL minimax problems.
翻译:在本文中,我们考虑的是一类非混凝土-非混凝土微型Max问题,即NC-PL微型Max问题,其客观功能满足对内变量的Polyak-$\L$ojasiewicz(PL)条件。我们建议采用零级交替梯度下降增殖算法(ZO-AGDA)和零级差异降低交替梯度下降升降率(ZO-VRAGDA)算法(ZO-VRAGDA),分别用于在确定和随机设置下解决NC-PL微型Max问题的计算法(ZO-AGDA和ZO-VRAGDA的固定点获得$-Plon$的迭代算法数目,分别由$\mathcal{O}(\varepsilon ⁇ -2}和$\mathcal{O}(\varepsilon ⁇ -3}分别是解决NCPLAM复杂度的第两个最低序算法问题。