Image analysis technologies empowered by artificial intelligence (AI) have proved images and videos to be an opportune source of data to learn about humpback whale (Megaptera novaeangliae) population sizes and dynamics. With the advent of social media, platforms such as YouTube present an abundance of video data across spatiotemporal contexts documenting humpback whale encounters from users worldwide. In our work, we focus on automating the classification of YouTube videos as relevant or irrelevant based on whether they document a true humpback whale encounter or not via deep learning. We use a CNN-RNN architecture pretrained on the ImageNet dataset for classification of YouTube videos as relevant or irrelevant. We achieve an average 85.7% accuracy, and 84.7% (irrelevant)/ 86.6% (relevant) F1 scores using five-fold cross validation for evaluation on the dataset. We show that deep learning can be used as a time-efficient step to make social media a viable source of image and video data for biodiversity assessments.
翻译:人工智能(AI)所增强的图像分析技术(AI)已证明图像和视频是了解座头鲸(Megaptera novaeangliae)人口规模和动态的合适数据来源。随着社交媒体的出现,YouTube等平台在时空环境中展示了大量视频数据,记录全世界用户的座头鲸相遇。在我们的工作中,我们侧重于将YouTube视频自动化分类为相关或不相关内容,依据是它们是否记录真正的座头鲸遭遇。我们使用CNN-RNN的架构在图像网数据集上预先培训,以将YouTube视频分类为相关或无关内容。我们实现了平均85.7%的准确度,84.7%(不相关)/86.6%(相关)F1分,使用五倍的交叉验证来评价数据集。我们显示,深度学习可以作为一种有时间效率的步骤,使社交媒体成为生物多样性评估的可行图像和视频数据来源。