Customer satisfaction is crucially affected by energy consumption in mobile devices. One of the most energy-consuming parts of an application is images. While different images with different quality consume different amounts of energy, there are no straightforward methods to calculate the energy consumption of an operation in a typical image. This paper, first, investigates that there is a correlation between energy consumption and image quality as well as image file size. Therefore, these two can be considered as a proxy for energy consumption. Then, we propose a multi-objective strategy to enhance image quality and reduce image file size based on the quantisation tables in JPEG image compression. To this end, we have used two general multi-objective metaheuristic approaches: scalarisation and Pareto-based. Scalarisation methods find a single optimal solution based on combining different objectives, while Pareto-based techniques aim to achieve a set of solutions. In this paper, we embed our strategy into five scalarisation algorithms, including energy-aware multi-objective genetic algorithm (EnMOGA), energy-aware multi-objective particle swarm optimisation (EnMOPSO), energy-aware multi-objective differential evolution (EnMODE), energy-aware multi-objective evolutionary strategy (EnMOES), and energy-aware multi-objective pattern search (EnMOPS). Also, two Pareto-based methods, including a non-dominated sorting genetic algorithm (NSGA-II) and a reference-point-based NSGA-II (NSGA-III) are used for the embedding scheme, and two Pareto-based algorithms, EnNSGAII and EnNSGAIII, are presented. Experimental studies show that the performance of the baseline algorithm is improved by embedding the proposed strategy into metaheuristic algorithms.
翻译:客户满意度受到移动设备能源消耗的极大影响。 应用中最消耗能源的部分之一是图像。 虽然不同质量的不同图像消耗了不同数量的能源,但并没有直接的方法来计算典型图像中操作的能源消耗。 本文首先调查能源消耗与图像质量以及图像文件大小之间的关系。 因此, 这两份文件可以被视为能源消耗的替代物。 然后, 我们提出一个多目标战略, 以提高图像质量, 并减少基于 JPEG 图像压缩中量化表的图像文件文件规模。 为此, 我们使用了两种通用的多目标运算方法: 升级和基于Pareto的。 升级方法基于不同目标, 而基于Pareto的技术旨在找到一套解决方案。 因此, 我们可将我们的战略嵌入五种升级算算算算法, 包括基于能源的多目标遗传算法( EnMONSA ), 能源认知多目的粒子节算法(EmpOPSO III)、 能源- II- realalalalal- requial- develrial- developmental- developmental- a Enversal- eal- enmalational- developtional- 和Enal- ASal- revial- 和Empal- revial- AS- revial- revidustrisal- revidustrisal- revial- sal- sal- 和O- revial- laisal- 和O- sal- sal- sal- sal- sal- sal- laction- sal- sal- sal- lamental- 和O- 和O) 和O- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- lamental- ladal- sal- sal- sal- lactional- sal- sal- sal- sal- laction- sal- laction- laction- sal- laction- sal- sal- sal- sal- sal- sal- sal- sal- sal- 和E- sal- 和