We prove two results about randomised query complexity $\mathrm{R}(f)$. First, we introduce a "linearised" complexity measure $\mathrm{LR}$ and show that it satisfies an inner-optimal composition theorem: $\mathrm{R}(f\circ g) \geq \Omega(\mathrm{R}(f) \mathrm{LR}(g))$ for all partial $f$ and $g$, and moreover, $\mathrm{LR}$ is the largest possible measure with this property. In particular, $\mathrm{LR}$ can be polynomially larger than previous measures that satisfy an inner composition theorem, such as the max-conflict complexity of Gavinsky, Lee, Santha, and Sanyal (ICALP 2019). Our second result addresses a question of Yao (FOCS 1977). He asked if $\epsilon$-error expected query complexity $\bar{\mathrm{R}}_{\epsilon}(f)$ admits a distributional characterisation relative to some hard input distribution. Vereshchagin (TCS 1998) answered this question affirmatively in the bounded-error case. We show that an analogous theorem fails in the small-bias case $\epsilon=1/2-o(1)$.
翻译:我们用随机的查询复杂度来证明 $\ mathrm{R} (f) 的两种结果。 首先, 我们采用“ 线性” 复杂度量 $\ mathrm{LR} $\ mathrm{LR} 美元, 并显示它能够满足一个内部最优化的构成定理: $\ mathrm{R} (f)\ circ g)\ geq\ Omega( mathrm{R} (g) $) 。 我们的第二个结果涉及一个小问题( FOCS 1977 ) 。 此外, $\ mathrlon{LRR} 是此属性的最大可能的最大衡量尺度。 特别是, $\ mathrm{LR} 美元可以比以前满足内部组成定理的计量标准大得多得多, 如 Gavinsky、 Lee、 Santha 和 Sanyal (cal P2019) 。 我们的第二个结果涉及 Yao (FCS) (FOC 1977) 。 他问, 在 Ver- bealision1 (frl) 中, ex) ex exisl ex ex ex ex ex ex exmission a exmission ex exil ex ex ex ex ex ex ex ex ex ex ex exil ex ex exmission a ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exil exual extra a ex exvi exil exil ex ex ex ex ex ex ex ex ex ex ex ex in a ex ex ex exual exil ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex