We develop a new type of model for solving the task of inverting the transmission effects of multi-mode optical fibres through the construction of an $\mathrm{SO}^{+}(2,1)$-equivariant neural network. This model takes advantage of the of the azimuthal correlations known to exist in fibre speckle patterns and naturally accounts for the difference in spatial arrangement between input and speckle patterns. In addition, we use a second post-processing network to remove circular artifacts, fill gaps, and sharpen the images, which is required due to the nature of optical fibre transmission. This two stage approach allows for the inspection of the predicted images produced by the more robust physically motivated equivariant model, which could be useful in a safety-critical application, or by the output of both models, which produces high quality images. Further, this model can scale to previously unachievable resolutions of imaging with multi-mode optical fibres and is demonstrated on $256 \times 256$ pixel images. This is a result of improving the trainable parameter requirement from $\mathcal{O}(N^4)$ to $\mathcal{O}(m)$, where $N$ is pixel size and $m$ is number of fibre modes. Finally, this model generalises to new images, outside of the set of training data classes, better than previous models.
翻译:我们开发了一种新型模型,通过建造一个$\mathrm{SO{%( 2, 1美元) / $- equivaliant 神经网络,解决翻转多模式光纤纤维传播效应的任务。 这个模型利用在纤维分光模式中已知存在的亚zimuthal相关关系,并自然说明输入和分光模式之间的空间安排差异。 此外,我们使用第二个后处理网络来清除圆形工艺品,填补空白,并打印图像,这是光纤传播性质所要求的。由于这个两个阶段方法,可以检查由更强健健健的物理驱动的等异变模型产生的预测图像,这种模型在安全关键应用中或两种模型的输出中可能有用,能够产生高质量的图像。此外,这个模型可以缩放到以前无法实现的多模式光纤成像分辨率,并在256\time 256美元平等图像上演示,这是改进新的可培训参数要求的结果,从$macal${N=美元, 这个模型的底值为美元。