We consider Bayesian inference from multiple time series described by a common state-space model (SSM) structure, but where different subsets of parameters are shared between different submodels. An important example is disease-dynamics, where parameters can be either disease or location specific. Parameter inference in these models can be improved by systematically aggregating information from the different time series, most notably for short series. Particle Gibbs (PG) samplers are an efficient class of algorithms for inference in SSMs, in particular when conjugacy can be exploited to marginalize out model parameters from the state update. We present two different PG samplers that marginalize static model parameters on-the-fly: one that updates one model at a time conditioned on the datasets for the other models, and one that concurrently updates all models by stacking them into a high-dimensional SSM. The distinctive features of each sampler make them suitable for different modelling contexts. We provide insights on when each sampler should be used and show that they can be combined to form an efficient PG sampler for a model with strong dependencies between states and parameters. The performance is illustrated on two linear-Gaussian examples and on a real-world example on the spread of mosquito-borne diseases.
翻译:我们认为由共同的州空间模型(SSM)结构描述的多个时间序列的贝氏推断,但不同的参数子集在不同子模型之间共享。一个重要例子是疾病动力学,其参数可以是疾病或特定位置。这些模型中的参数推断可以通过系统地汇总不同时间序列的信息来改进,特别是短期序列的信息。Patter Gibbs(PG)取样器是SSMs中一种有效的推断算法类别,特别是当共性可以被利用来排挤国家更新中的模型参数时。我们介绍了两个将静态模型参数排挤在飞行边上的不同PG抽样器:一个是在其他模型的数据集上按时间更新一个模型,另一个模型则通过将其堆叠成一个高维度的SSMMS来同时更新所有模型。每个取样器的独特性使其适合不同的建模环境。我们提供了每个取样器何时应用的洞察力,并表明它们可以组合成一个高效的PG抽样器,用于在州和地区之间具有很强的可靠性的模型。在现实和气温分布的参数上,以两个直线性地球为示例。