Neural architecture search (NAS) is an approach for automatically designing a neural network architecture without human effort or expert knowledge. However, the high computational cost of NAS limits its use in commercial applications. Two recent NAS paradigms, namely one-shot and sparse propagation, which reduce the time and space complexities, respectively, provide clues for solving this problem. In this paper, we propose a novel search strategy for one-shot and sparse propagation NAS, namely AdvantageNAS, which further reduces the time complexity of NAS by reducing the number of search iterations. AdvantageNAS is a gradient-based approach that improves the search efficiency by introducing credit assignment in gradient estimation for architecture updates. Experiments on the NAS-Bench-201 and PTB dataset show that AdvantageNAS discovers an architecture with higher performance under a limited time budget compared to existing sparse propagation NAS. To further reveal the reliabilities of AdvantageNAS, we investigate it theoretically and find that it monotonically improves the expected loss and thus converges.
翻译:神经结构搜索(NAS)是在没有人类努力或专家知识的情况下自动设计神经网络结构的一种方法。然而,NAS的高计算成本限制了其在商业应用中的使用。最近两个NAS模式,即一射和分散传播,分别减少了时间和空间复杂性,为解决这一问题提供了线索。在本文件中,我们建议为一射和分散传播的NAS,即AdvantageNAS,提出一个新的搜索战略,通过减少搜索迭代数,进一步降低NAS的时间复杂性。优势NAS是一种基于梯度的方法,通过在结构更新的梯度估计中引入信用分配来提高搜索效率。关于NAS-Bench-201和PTB数据集的实验表明,AdvantageNAS发现一个在有限的时间预算下,与现有的分散的NAS相比,性能更高。为了进一步揭示AdvantageNAS的可恢复性,我们从理论上进行调查,发现它单度地改进了预期的损失,从而会趋于一致。