In this article, we study skew constacyclic codes over a class of finite commutative semisimple rings. The automorphism group of $\mathcal{R}=\prod_{i=1}^t F_q$ is determined, and we characterize skew constacyclic codes over ring by linear codes over finite field. We also define homomorphisms which map linear codes over $\mathcal{R}$ to matrix product codes over $F_q,$ some optimal linear codes over finite fields are obtained.
翻译:在本篇文章中,我们研究了一组固定的流通半质环的折叠共环编码。 确定了 $\ mathcal{R ⁇ prod ⁇ i=1 ⁇ t F_q$ 的自动形态组, 我们用线性代码对环状的折叠共环编码进行比限定域的线性代码定性。 我们还定义了将线性代码映射在$\ mathcal{R}$ 以上的线性代码映射到超过$F_q的矩阵产品代码的共和式。 获得了超过一定域的一些最佳线性代码。